Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression
نویسندگان
چکیده
We show how existing models for the sedimentation of monodisperse flocculated suspensions and of polydisperse suspensions of rigid spheres differing in size can be combined to yield a new theory of the sedimentation processes of polydisperse suspensions forming compressible sediments (“sedimentation with compression” or “sedimentation-consolidation process”). For N solid particle species, this theory reduces in one space dimension to an N × N coupled system of quasilinear degenerate convection-diffusion equations. Analyses of the characteristic polynomials of the Jacobian of the convective flux vector and of the diffusion matrix show that this system is of strongly degenerate parabolic-hyperbolic type for arbitrary N and particle size distributions. Bounds for the eigenvalues of both matrices are derived. The mathematical model for N = 3 is illustrated by a numerical simulation obtained by the Kurganov–Tadmor central difference scheme for convectiondiffusion problems. The numerical scheme exploits the derived bounds on the eigenvalues to keep the numerical diffusion to a minimum.
منابع مشابه
A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes
We prove the convergence of a semi-implicit monotone finite difference scheme approximating an initial-boundary value problem for a spatially one-dimensional quasilinear strongly degenerate parabolic equation, which is supplied with two different inhomogeneous flux-type boundary conditions. This problem arises in the modeling of the sedimentation-consolidation process. We formulate the definiti...
متن کاملMonodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملPhenomenological foundation and mathematical theory of sedimentation–consolidation processes
The phenomenological theory of sedimentation describes a flocculated suspension as a mixture of the solid and the fluid as two superimposed continuous media. Starting from the mass and linear momentum balances for each component, this theory yields, through constitutive assumptions and an order-of-magnitude analysis, three coupled partial differential equations describing the sedimentation–cons...
متن کاملA Bilateral Obstacle Problem for a Class of Degenerate Parabolic-Hyperbolic Operators
We investigate some inner bilateral obstacle problems for a class of strongly degenerate parabolic-hyperbolic quasilinear operators associated with homogeneous Dirichlet data in a multidimensional bounded domain. We first introduce the concept of an entropy process solution, more convenient and generalizing the notion of an entropy solution. Moreover, the boundary conditions are expressed by us...
متن کاملSingular Optimal Control of a 1-D Parabolic-Hyperbolic Degenerate Equation
In this paper, we consider the controllability of a strongly degenerate parabolic equation with a degenerate one-order transport term. Despite the strong degeneracy, we prove a result of well-posedness and null controllability with a Dirichlet boundary control that acts on the degenerate part of the boundary. Then, we study the uniform controllability in the vanishing viscosity limit and prove ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 64 شماره
صفحات -
تاریخ انتشار 2003